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Abstract  

 
In this study, nonlinear dynamic analysis of laminated composite plates supported by springs is 

investigated. Three different plate materials are selected for the analysis. Nonlinear free vibrations of 

laminated composite plates are studied in two different boundary conditions. These boundary 

conditions are free and simply supported. The classical finite element method is used for the analysis. 

Spring supports stiffness matrix and nonlinear stiffness matrix are developed specifically to analysis. A 

code of computer program with Matlab is prepared for the calculations. Effect of boundary conditions 

and material properties are investigated on nonlinear free vibrations of composite plate. The results are 

graphically presented and discussed. 
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1. Introduction  

  

Dynamic analysis of composite plates is an important issue. This issue will continue to attract the 

attention of many researchers. In the literature, dynamic analysis of composite plate is usually 

linear. Nonlinear analyzes has been neglected in terms of the difficulty of calculation. In the 

literature, dynamic analyzes of composite plate is usually linear. Nonlinear analyzes has been 

neglected in terms of the difficulty of calculation. Additionally, the researches on nonlinear 

dynamic analysis of composite plates of supported by springs are quite a few. In the designing of 

composite plates is very important to know frequency values of nonlinear. The nonlinear 

frequencies may be required in terms of optimum design. Shooshtari et al. investigated linear and 

nonlinear free vibrations of composite and fiber metal laminated plates [1]. Lal et al. studied 

nonlinear free vibration analysis of laminated composite on elastic foundation [2]. Singh et al. [3] 

presented post-buckling and nonlinear free vibration analysis of a laminated composite. Sobhy 

dealt with vibration and buckling behavior of exponentially graded material sandwich plate 

resting on elastic foundations under various boundary conditions [4]. Patel et al. investigated 

dynamic instability of laminated composite plates supported on elastic foundations [5]. Li 

determined the modal characteristics of a rectangular plate with general elastic supports alone its 

edges [6]. Ashour presented semi-analytical solutions to determine the natural frequencies and 

the mode shapes of angle-ply laminated plates with edges elastically restrained [7]. Malekzadeh 

et al. studied large deformation analysis of composite plates on nonlinear elastic foundations [8]. 

Khov et al. calculated the static deflections and modal characteristics of orthotropic plates with 

general elastic boundary supports [9]. Kucukrendeci et al. presented effect of elastic boundary 
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conditions on free vibration of laminated composite plates [10]. In this study, nonlinear free 

vibration of laminated composite plates supported by springs is investigated. Spring supports 

stiffness matrix and nonlinear stiffness matrix are written specifically to analyzes. Effect of 

boundary conditions and material properties are studied on nonlinear free vibrations of composite 

plate. The results are graphically presented. 

 

 

2. Finite Element Method 

 

A rectangular element, which is under the effect of bending vibrations, is shown at Fig. 1. There 

are three degrees of freedom at each node, at each corner. There are three degrees of freedom at 

each node, respectively, deflection of z direction and the two rotations, w, yw/=   x 
 
and

xw/-=   y  . In terms of then on-dimensional ),(   coordinates, 
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Figure 1. Geometry of a rectangular element (
b

y
,

a

x
  ). 

Since the element has twelve degrees of freedom, the displacement function can be represented 

by a polynomial having twelve terms due to simplicity. It can be written as follows related to 

1 and 1  coordinate, at the node points. 

w=[N1(  , )N3(  , )N3(  , )N4(  , ) ] {w}e 

w=[N (  , )]{w}e                               (1) 

Where {w}e is the displacement and rotations vector 

{w}e
T= [w1 x1 y1... w4 x4 y4]                                                              (2) 

At (2.1), defined the N (  , ) is 

Nj
T(  , ) =
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and
jj ,(  ) are the coordinates of node j [11]. 

 

 

2.1. Mass matrix for plate element 

 

The kinetic energy expressions for thin plate bending element is 
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where is  density, h is thick plate and A is area of plate. Substituting Eq. (1) into Eq. (4) gives 

Te = 
2

1 T

e

.

}w{ [M]e{
.

w }e                                                    (5) 

where  

[M]e=Ae  h[N]T[N]dA   or     [M]e=  hab 
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Eq. (6) is element mass matrix. If NJ( ,) substitute from Eq. (3) and integrate equation Eq. (6), 

the result will be as follows [11] 
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2.2. Linear stiffness matrix for composite plate element 

 

The strain energy can be expressed in the [11]: 
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and 
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ijQ


 a matrix of reduced stiffness components for the kth layer whose surfaces are at distances zk-1 , 

zk from the middle surface of the plate. 
ijQ



 
are the components transformed lamina stiffness 

matrixes which are defined as follows; 
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Terms of the
ijQ



matrix are; 
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Substituting Eq. (8) into Eq. (1) gives 
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Ue= 
2

1
{w}e

T[K]e{w}e                                       (13) 

[K]e can be written as follows; 

[K]e=     
A

T
dABDB

                                                                                                                    

(14) 

Equation (14) is the element stiffness matrix. And  

[B]= 
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dA = dxdy, 
b

y
,

a

x
  , dabd=dA equal by is Eq. (14) new expression  

[K]e=     
A

T
ddBDBab                                                                                                         (16) 

Element stiffness matrix terms are separated square underside matrix and stiffness matrix is 

symmetric [12].                                                              
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2.3. Nonlinear stiffness matrix for composite plate element  

 

The geometrical nonlinear strain energy for the high displacement systems can be given as  

UNL=     dV
2

1

v
0

T
                                                                              (18)  

where the matrix  0  is the axial stresses of the element calculated linearly.    is the nonlinear 

displacement in the z direction. The terms of the matrix  0  can be found using 

     D0                                                                                                                                                   (19) 

The matrix [D] was defined previously in Eq. (10). Here,    represents the axial displacement on 

the other hand,  0  and    are defined as   

 0 = 








yxy

xyx




                                                                   (20) 

and 
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Equation (18) can be re-defined using the thickness of the plate element, h, as 

UNL=     dAh
2

1

A
0

T
                                                                       (22) 
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Substituting (1) in (22) gives 

UeNL= 
2

1
{

*w }T
NLe[K] {

*w }                                                                (23) 

Here, {
*w } is the nonlinear displacement vector. 

NLe[K]  matrix represents the nonlinear stiffness 

matrix of the element and can be defined with the Eq. (18) considering plate geometry, as  

     dABBh[K] '

A
0

T'

NLe                                                                   (24) 

or 

      ddBBabh[K] '

0

T+1
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+1

-1

'

NLe                                                                                (25) 

Here, the matrix  'B  can be defined using equation (3) as  

 'B = 
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  [N(, )]                                                                           (26) 

The nonlinear stiffness matrix of the element can now be obtained using Eq. (25) in the form of 

3x3 square partitioned sub-matrixes and can be given as  
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2.4 Analysis of linear undamped free vibration of laminated composite plates of supported by 

springs 

 

Free vibration analysis of the laminated composite plates is made by eq. 28 

 [M]{
..

u } + [K]{u}={0}                                                (28) 

where [M] and [K] are system mass matrix and system stiffness matrix respectively. System 

matrix is consists in combining element matrix (Eq. 7, 17). 

([K] - 2 [M]) {} = {0} .                                               (29) 

In linear free vibration analysis of a structure, the solve of the linear eigenvector problem is 

necessary to determine the natural frequencies “” and modes of vibration [12]. The parameters 

of spring are adding to [K] matrix.  New equation has been rewritten as Eq. 30, 31. 

[M]{
..

u } + ([K] + [Ks]){u} = {0}                                     (30) 

[([K] + [Ks]) - 2 [M]] {} = {0}                                                (31)  

Where [Ks] is parameters of spring.  

 

2.5 Analysis of nonlinear undamped free vibration of laminated composite plates of supported 

by springs 
 

The nonlinear free vibration analysis is carried out numerically by solving a geometrically 

nonlinear system with an appropriate iteration step for each deformation stage. The analysis of 
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nonlinear free vibration requires a series of operations [13]. The nonlinear element stiffness 

matrix  
NLeK is given in Eq. 27. Nonlinear system stiffness matrix  NLK consists of combining 

nonlinear element stiffness matrix. 

[([K] + [K]NL+ [KS]) - 𝜔𝑁𝐿
2  [M]] {NL} = {0}                                             (32) 

In Eq. 33, [K] is the linear system stiffness matrix, [M] is the system mass matrix and [KS] is the 

spring matrix. The nonlinear natural frequencies (𝜔𝑁𝐿) and nonlinear unit vector {NL} are 

calculated by solving Eq. 32. In the analyzes, the damping factor was not taken into account. 

 

 

3. Physical Properties of the Composite Plates  

 

In this study, three different plate models are selected. These models and boundary conditions are 

shown in Figure 2 and Figure 3. The value of the spring stiffness is selected as k=1250 N/m.  

 
Figure 2. Free boundary conditions model of     Figure 3. Simply supports boundary conditions model  

laminated composite plate of supported by springs      of laminated composite plate of supported by springs 

 

Material properties of fiber fabrics are shown in Table 1. The thickness of fiber fabrics is chosen 

as 0.2 mm. Total plate thickness is h=1mm. A specific computer program is prepared with 

Matlab software for the calculations. 

 
Table 1. Material properties of fiber fabrics [14, 15]. The thickness of fiber fabrics is 0.2 mm. 

 

Type   (kg/m3) E1(GPa) E2(GPa) G12(GPa) 12 21 

    AS/3501 Graphite/Epoxy 1630 138 9.0 6.9 0.3 0.019 

  Kev.49/934  Kevlar/Epoxy 1384 76 5.5 2.3 0.34 0.024 

   Boron/5505  Boron/Epoxy 2242 204 18.5 5.59 0.23 0.022 

 

In this study, flat composite laminated plates are used. All plate models are in the form of 

rectangular. The dimensions of all the plate models are selected a=0.45 m and b=0.30 m. 

Composite plates were formed by five laminates of overlapping lined up. Laminates are lined up 

symmetrically (, -, , -, ).  is orientation angle of laminate. Two different orientation angle 

is selected for analyzes. These angles are 150 and 300.  For example,  = 150, angles of five 

laminated plate are  150, -150, 150, -150, 150, respectively. The laminates are fiber fabrics. In this 

study, the material of fiber fabrics is selected AS/3501 graphite/epoxy, Kev.49/934 Kevlar/epoxy 

and Boron/5505 Boron/epoxy.  
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4. Numerical Analysis    
 

The boundary conditions of composite plate given in Figure 4 are selected for linear analysis.  

The values of natural frequency of the undamped free vibration are calculated according the Eq. 

29. The frequency parameter “” is obtained with the formula given in Eq. 33. In similar 

conditions, frequency parameters are found in [16, 17] for composite plates. Ref. 16 and 17 used 

different finite element method. In the first 14 vibration modes, frequency parameters are 

compared with Ref. 16-17 (Figure 5 and 6). Similar results are obtained.  

D0=E1h
3/12(1-ν12 ν21) 

λ = ρhω4a4/D0                                              (33)    
In this comparison, the material of composite plate is the graphite-epoxy. Plate boundary 

condition is fully clamped edges (Fig. 4). 

 
Figure 4. Fully clamped boundary conditions  model of laminated composite plate (4x4 mesh element). 

Figure 5. =150, Linear natural frequency parameters          Figure 6. =300, Linear natural frequency parameters of  
of fully clamped boundary conditions  model of                    fully clamped boundary conditions  model of laminated 
laminated composite plate.                                                     composite plate.  

 

The plate dimensions are a=0.45 m and b=0.30 m. The material constants of the composite plate 

were modulus of elasticity E1=120 GPa and E2=7.79 GPa, modulus of shear G12 = 6.15 GPa and 

poisons ratios ν12=0.3 and ν21= 0.019 [16]. In linear analyzes, orientation angles () of laminate 

are150 and 300. In finite element method, the matrix [K], [M] (in Eq. 29) selected for calculation. 

 

Nonlinear frequencies are calculated from Eq.32. Eq.33 is used for the calculation of nonlinear 

frequencies parameters. According to boundary conditions, spring matrix [KS] and nonlinear 

system stiffness matrix [K]NL is written specifically for this study. In nonlinear analyzes, the 

geometrical nonlinearity are used. In all the selected boundary conditions (Fig. 2, 3), the 

nonlinear frequency parameters of laminated composite plates (with orientation angles of =150 
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and =300) are given graphically in Figures 7, 8, 9 and 10. In Figures 7, 8, 9 and 10 graphics 

show the frequency value for the first 25 modes. 

 

 
 

Figure 7. =150, AS/3501 Graphite/epoxy, Kev.49/934 Kevlar/epoxy, Boron/5505 Boron/epoxy, nonlinear 

frequency parameters of free boundary conditions, a=0.45 m and b=0.30 m. 

 

 
Figure 8. =150, AS/3501 Graphite/epoxy, Kev.49/934 Kevlar/epoxy, Boron/5505 Boron/epoxy, nonlinear 

frequency parameters of simply supports boundary conditions, a=0.45 m and b=0.30 m. 

 

In Figure 7, AS/3501 and Boron/5505 plates shows similar characteristics.  Kev.49/934 plate is 

different. In Figure 8, three plates show similar characteristics. In Figure 7 and 8, plates show 

similar properties despite different boundary conditions. In Fig. 9 and 10, the plates show similar 

behaviors to both boundary conditions. In the first five modes of vibrations, characteristics of 

plates can be said that similar in all boundary conditions. In all boundary conditions, Kev.49/934 

plate shows lowest frequency values and Boron/5505 plate have high frequency values. 
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Figure 9.  =300, AS/3501 Graphite/epoxy, Kev.49/934 Kevlar/epoxy, Boron/5505 Boron/epoxy, nonlinear 

frequency parameters of free boundary conditions, a=0.45 m and b=0.30 m. 

 

 
Figure 10.  =300, AS/3501 Graphite/epoxy, Kev.49/934 Kevlar/epoxy, Boron/5505  Boron/epoxy,  nonlinear  

frequency parameters of  simply supports boundary conditions, a=0.45 m and b=0.30 m. 

 

 

5. Discussion  

 

Nonlinear dynamic analysis of laminated composite plates supported by springs is presented in 

the different boundary conditions, using finite element method. The spring system stiffness 

matrix [KS] and nonlinear system stiffness matrix [K]NL was written specifically according to 

boundary conditions. The boundary conditions affected to vibrations of composite plate. These 

effects are graphically presented. According to selected composite plates for study, vibrations of 

plates can be said that similar in the first five modes.  In subsequent modes are different. 

Nonlinear results may be considered in the design of composite plates.   
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